Theme

Biological phenomena are mainly regulated through the maintenance and conversion of cell function based on replication and transcription. Since these are regulated by nucleosome structure, novel theoretical frameworks are desirable.

About Research

Establishment of novel frameworks on eukaryotic gene regulation

Horikoshi was devoted to the leading-edge study on eukaryotic transcription in his early days. Then, his focus was shifted to chromatin, which drew the attention of gene regulation researchers and has been actively studied. He was far ahead of his time. In the chromatin study, he tried to obtain novel components that would play roles in eukaryotic gene regulation. He was and has been eager for novel principles and concepts that can illustrate gene regulation at nucleosome, chromatin, and chromosome levels. Recently, he has the answers to the unsolved questions about functional roles of common subunits among the multisubunit complexes and the mechanism of gene regulation in ancient organisms about several billion years ago.

(References for further understanding: 74 out of 168 publications)
74. Biomed.Res.Rev., 2, 1-3 (2018)
73. Cell Rep., 21, 3941–3956 (2017)
72. Sci. Rep., 6, 27922 (2016)
71. J.Biol.Chem., 290, 28760-28777 (2015)
70. Proc.Natl.Acad.Sci.U.S.A., 111, 699–704 (2014)
69. Curr. Pharm. Design,19, 5019-5042 (2013)
68. Genes Cells, 17, 65 (2012)
67. Genes Cells, 16,1050 (2011)
66. J.Biol.Chem., 286, 30504 (2011)
65. EMBO J., 30, 3353 (2011)
64. Genes Cells, 16, 590 (2011)
63. Genes Cells, 15, 945 (2010)
62. Genes Cells, 15, 553 (2010)
61. Proc.Natl.Acad.Sci.U.S.A., 107, 8153 (2010)
60. Genes Cells, 14, 1271 (2009)
59. Genes Cells, 14, 789 (2009)
58. J.Mol.Biol., 378, 987 (2008)
57. Mol.Cell.Biol., 28, 1171 (2008)
56. J.Biol.Chem., 282, 9895 (2007)
55. Nature, 446, 338 (2007)
54. Proc.Natl.Acad.Sci.U.S.A., 104, 4285 (2007)
53. J.Biol.Chem., 282, 4193 (2007)
52. J.Mol.Biol., 365, 1047 (2007)
51. Genes Cells, 12, 13 (2007)
50. Nature Struct.Mol.Biol., 13, 331 (2006)
49. J.Biol.Chem., 280, 12123 (2005)
48. Genes Cells, 9, 499 (2004)
47. Nature Struct.Mol.Biol., 11, 275 (2004)
46. J.Biol.Chem., 279, 9615 (2004)
45. J.Biol.Chem., 279, 1546 (2004)
44. Mol.Cell.Biol., 23, 8528 (2003)
43. J.Biol.Chem., 278, 35660 (2003)
42. J.Biol.Chem., 278, 28758 (2003)
41. Nature Genet., 32, 370 (2002)
40. J.Biol.Chem., 277, 35688 (2002)
39. Proc.Natl.Acad.Sci.U.S.A., 99, 9334 (2002)
38. Mol.Cell.Biol., 22, 4815 (2002)
37. Genes Cells, 6, 1043 (2001)
36. Cell, 102, 463 (2000)
35. Genes Cells, 5, 221 (2000)
34. Genes Cells, 5, 29 (2000)
33. FEBS Lett., 431, 131 (1998)
32. J.Biol.Chem., 272, 30595 (1997)
31. Proc.Natl.Acad.Sci.U.S.A., 94, 85 (1997)
30. Proc.Natl.Acad.Sci.U.S.A., 92, 8195 (1995)
29. Nature, 369, 252 (1994)
28. Nature, 367, 484 (1994)
27. Science, 261, 463 (1993)
26. Nature, 363, 744 (1993)
25. Genes Dev., 7, 1033 (1993)
24. Nature, 362, 179 (1993)
23. Proc.Natl.Acad.Sci.U.S.A., 89, 11809 (1992)
22. Nature, 360, 40 (1992)
21. Proc.Natl.Acad.Sci.U.S.A., 89, 2844 (1992)
20. Proc.Natl.Acad.Sci.U.S.A., 89, 1060 (1992)
19. Cell, 67, 1241 (1991)
18. Nature, 354, 401 (1991)
17. Nature, 354, 398 (1991)
16. Proc. Natl.Acad.Sci.U.S.A., 88, 9553 (1991)
15. Science, 251, 1476 (1991)
14. Proc.Natl.Acad. Sci.U.S.A., 87, 9163 (1990)
13. Nature, 348, 86 (1990)
12. Nature, 346, 390 (1990)
11. Nature,346, 387 (1990)
10. Cell, 61, 1171 (1990)
9. Cell, 61, 475 (1990)
8. Nature, 341, 299 (1989)
7. Proc.Natl.Acad.Sci.U.S.A., 86, 4843 (1989)
6. Cell, 54, 1043 (1988)
5. Cell, 54, 1033 (1988)
4. Cell, 54, 665 (1988)
3. J.Biol.Chem., 262,3322 (1987)
2. J.Biol.Chem., 260, 5739 (1985)
1. J.Biol.Chem., 259, 608 (1984)

Publication

  1. Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions.
    Horikoshi M, Carey MF, Kakidani H, Roeder RG.
    Cell, 54, 665-669 (1988)
  2. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex.
    Horikoshi M, Hai T, Lin YS, Green MR, Roeder RG.
    Cell, 54, 1033-1042 (1988)
  3. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box.
    Horikoshi M, Wang CK, Fujii H, Cromlish JA, Weil PA, Roeder RG.
    Nature, 341, 299-303 (1989)
  4. Identification of human TFIID components and direct interaction between a 250-kDa polypeptide and the TATA box-binding protein (TFIIDτ).
    Takada R, Nakatani Y, Hoffmann A, Kokubo T, Hasegawa S, Roeder RG, Horikoshi M.
    Proc. Natl. Acad. Sci. U.S.A., 89, 11809-11813 (1992)
  5. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing.
    Kimura A, Umehara T, Horikoshi M.
    Nature Genet., 32, 370-377 (2002)
  6. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.
    Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T.
    Nature, 446, 338-341 (2007)
  7. Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network.
    Hayashi Y, Senda T, Sano N, Horikoshi M.
    Genes Cells, 14, 789-806 (2009)
  8. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction.
    Akai Y, Adachi N, Hayashi Y, Eitoku M, Sano N, Natsume R, Kudo N, Tanokura M, Senda T, Horikoshi M.
    Proc. Natl. Acad. Sci. U. S. A., 107, 8153-8158 (2010)
  9. Roles of common subunits within distinct multisubunit complexes.
    Nakabayashi Y, Kawashima S, Enomoto T, Seki M, Horikoshi M.
    Proc. Natl. Acad. Sci. U. S. A., 111, 699-704 (2014)
  10. Leading role of TBP in the establishment of complexity in eukaryotic transcription initiation systems.
    Kawakami E, Adachi N, Senda T, Horikoshi M.
    Cell Rep., 21, 3941–3956 (2017)
Masami Horikoshi
Associate Professor
Ph.D.
Graduate School of Pharmaceutical Sciences